A Latent-Class Mixture Model for Incomplete Longitudinal Gaussian Data

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A latent-class mixture model for incomplete longitudinal Gaussian data.

In the analyses of incomplete longitudinal clinical trial data, there has been a shift, away from simple methods that are valid only if the data are missing completely at random, to more principled ignorable analyses, which are valid under the less restrictive missing at random assumption. The availability of the necessary standard statistical software nowadays allows for such analyses in pract...

متن کامل

Dual imputation model for incomplete longitudinal data.

Missing values are a practical issue in the analysis of longitudinal data. Multiple imputation (MI) is a well-known likelihood-based method that has optimal properties in terms of efficiency and consistency if the imputation model is correctly specified. Doubly robust (DR) weighing-based methods protect against misspecification bias if one of the models, but not necessarily both, for the data o...

متن کامل

A Latent-Class Model for Clustering Incomplete Linear and Circular Data in Marine Studies

Identification of representative regimes of wave height and direction under different wind conditions is complicated by issues that relate to the specification of the joint distribution of variables that are defined on linear and circular supports and the occurrence of missing values. We take a latent-class approach and jointly model wave and wind data by a finite mixture of conditionally indep...

متن کامل

Latent class and finite mixture models for multilevel data sets.

An extension of latent class (LC) and finite mixture models is described for the analysis of hierarchical data sets. As is typical in multilevel analysis, the dependence between lower-level units within higher-level units is dealt with by assuming that certain model parameters differ randomly across higher-level observations. One of the special cases is an LC model in which group-level differen...

متن کامل

­­Image Segmentation using Gaussian Mixture Model

Abstract: Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we used Gaussian mixture model to the pixels of an image. The parameters of the model were estimated by EM-algorithm.   In addition pixel labeling corresponded to each pixel of true image was made by Bayes rule. In fact,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Biometrics

سال: 2007

ISSN: 0006-341X

DOI: 10.1111/j.1541-0420.2007.00837.x